
1

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

©2004 IDesign Inc. All rights reserved 

Juval Löwy
www.idesign.net

.NET Enterprise Services

Cleveland .NET SIG, January 2004

n Software architect
l Consults and trains on .NET migration and design

n Microsoft's Regional Director for the Silicon Valley
n Authored

l Programming .NET Components (2003, O’Reilly)
l COM and .NET Component Services (2001, O’Reilly)

n Participates in the .NET design reviews
n Contributing editor and columnist to the Visual Studio Magazine

l Publishes at MSDN and other magazines
n Speaker at the major international software development conferences
n Recognized Software Legend by Microsoft  
n Contact at www.idesign.net

About Juval Löwy



2

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

What are Enterprise Applications?

n The term Enterprise means different things for different people
l Large number of users, scalability and throughput a must
l Fewer users, with drastic spikes in load
l Few users using many expensive resources
l Mission critical, 24x7, zero down time
l Sensitive information
l Interoperate with a wide range of platforms

n Where quality and productivity are top priority
n Any application that is not a toy program

n Set of component services designed to ease considerably 
developing Enterprise applications

n The result of integrating COM+ into .NET
n Components using these services called Serviced Components
n .NET assemblies mapped to COM+ applications 

l A COM+ application can contain components from multiple 
assemblies

What are .NET Enterprise Services?



3

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

.NET Enterprise Services

n Instance management 
l Pooling
l JITA

n Transactions
n Concurrency management
n Loosely coupled events 
n Queued components  
n Security 

l Authorization  
l Authentication
l Identity

.NET Enterprise Services

n Remote calls and Web Services
n Combination of the services 
n Services are configured: 

l Administratively 
l Declaratively (attributes)
l Programmatically  



4

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Evolution of Enterprise Services

n MTS 1.0                                            1996
n MTS 2.0                                            1998
n COM+ 1.0                                         2000
n COM+ 1.5                                         2001
n .NET Enterprise Services 2002
n Indigo 2006 (?)
n MTS and COM+ were 

bad technology monikers

Serviced Components

n Serviced component must derive from ServicedComponent
l System.EnterpriseServices
l Cannot use static members/methods
l Cannot have parameterized constructors
l Should use interfaces (not have to)
l Should use class libraries (not have to)

n Use Component Services Explorer or special attributes
l Some with Explorer only (deployment specific)
l Some programmatic only
l Everything else use attributes

n .NET integration with COM+ is better than COM/VS6.0



5

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

n Use the Component Services Explorer for this component 

using System;   
using System.EnterpriseServices;   

public interface IMessage   
{      

void ShowMessage();   
}    
public class MyComponent:ServicedComponent,IMessage
{

public MyComponent() {}//constructor
public void ShowMessage()
{

MessageBox.Show("Hello!","MyComponent");
}

}

Serviced Components

Interception

n .NET does not use COM interop for serviced components
n Special context interceptors configure services
n Call itself doesn't leave managed code
n Remote calls can use

l DCOM
l Remoting
l Web services  



6

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Interception (today)

Proxy Services A
Interceptor

Object

Client

Managed Code

Unmanaged Code

Interception

Services B
Interceptor

Services B
Interceptor

n Call itself doesn't leave managed code
l No parameters marshaling conversion penalty 

Interception (today)

Proxy Services A
Interceptor

Object

Client

Managed Code

Unmanaged Code

Interception

Services B
Interceptor

Services B
Interceptor

n Call itself doesn't leave managed code
l No parameters marshaling conversion penalty 



7

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Interception - Indigo

Proxy
Services A
Interceptor

Object

Client

Managed Code

Interception

Services B
Interceptor

Services B
Interceptor

Assemblies and Applications

n COM+ application can contain components from multiple 
assemblies

Assembly 1

comp
A

comp
B

comp
C

Assembly 2

comp
D

comp
E

Application 1

comp A comp B comp D



8

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Dynamic Registration

n When no need for deployment specific configuration
n At runtime, .NET verifies current assembly version is mapped to 

COM+ application
l New version/signatures triggers dynamic registration of all 

components in the assembly 
ÙRegSvcs.exe  /reconfig /fc MyAssembly.dll

n If app exists but components are not in, .NET adds them to app
n Only available for managed clients

l Administrator rights  
n COM+Application stays in the Component Services Explorer  

[assembly: ApplicationActivation(ActivationOption.Server)]
//or
[assembly: ApplicationActivation(ActivationOption.Library)]

Application Activation Type

n Can specify application activation type
l Server or a library application 
l Default is library

l ActivationOption.Service is not available



9

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

using System.Runtime.InteropServices;

[Guid("260C9CC7-3B15-4155-BF9A-12CB4174A36E")]
public class MyComponent :ServicedComponent,IMyInterface
{…} 

Versioning

n RegSvcs creates  CLSID for components
l Any change registers a new CLSID, to avoid versioning 

conflicts with existing clients 
l Clients automatically use highest compatible version 

n Can specify that CLSID as a class attribute

using System.Runtime.InteropServices; 

[ProgId("My Serviced Component")]
public class MyComponent :ServicedComponent,IMyInterface
{…} 

Versioning

n Specifying CLSID forces RegSvcs  to use it in spite of changes
l Very handy for development

n Can also specify the component name (prog-ID) 
l ProgidAttribute
l System.Runtime.InteropServices



10

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Assembly Identity

n Assembly must have a strong name
l To ensure versioning 

n Assembly should be in the GAC
l Must be in a known location otherwise
l Server applications/remote calls

Remote Calls

n Can use .NET remoting
n Can generate ES proxy application
n Can use web services 

l Windows 2003 Server only 



11

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

public interface IMyInterface
{

void MyMethod();
}
public class MyComponent :ServicedComponent,IMyInterface
{ 
public void MyMethod()
{
Guid contextID = ContextUtil.ContextId;
String traceMessage = "Context ID is " + contextID.ToString();
Trace.WriteLine(traceMessage);

}
}

Accessing ES Context

n Not the same as .NET context
n ContextUtil access context object and its interfaces

l Static methods and properties
n Example: tracing context ID

[MustRunInClientContext(true)]
public class MyComponent :ServicedComponent,IMyInterface
{}

[MustRunInClientContext]
//same as 
[MustRunInClientContext(true)]

Activation Context Attribute

n MustRunInClientContext attribute controls whether 
object must be activated in creator’s context 

l Default is true



12

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Instance Management

n The single most important driving force behind the move to three
tiers is the need for scalability

n You no longer can expect to dedicate a server object per client

Client Types

n Needs to handle two kinds of clients
l Intranet clients
l Internet clients

n Differ not only in the way they connect with application, but also 
in the interaction pattern 

n Must scale up to both kinds, and compensate for the differences 



13

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Intranet client

DB
Server
Object

Server
Object

Server
Object

Data TierBusiness logic middle TierPresentation Tier

n Like classic client/server model
n Usually a rich UI (Window Forms or browser with ActiveX 

controls)
l Richer user experience, more privileges and features

n Connects directly to server objects in middle tier 

n Relatively fewer clients

n Calling pattern
l Create object
l Use it
l Dispose 

n Relatively fewer Intranet clients
l Overhead of creating objects and clean up per client is not 

a scalability limitation
n What impends scalability 

l Holding objects for long time, while using objects only 
in a fraction of that time

l When Intranet application starts, it gets all objects it needs 
(perforce,responsiveness) and dispose at shutdown

l If object per client, you tie in crucial resources for long time, 
l and will eventually run out of resources

Intranet client



14

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Internet client

DB
Server
Object

Server
Object

Data TierBusiness logic middle TierPresentation Tier

WWW

HTTP

IIS

User Browser

HTML

n A browser or client connect to Internet server (IIS)
n Page or web service creates objects and when the request is done, 

disposed resources
n The client connection is stateless – no object references are 

maintain outside the scope of a request 

Internet client

n The duration page uses the objects is usually not a scalability 
limitation

n Relatively many Intranet clients
l Overhead of creating objects and clean up per client 

is a scalability limitation
l Service will appear to be unavailable or slow response time
l At peak demand periods, may kill your ASP.NET app



15

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Object Pooling

n ES maintain a pool of objects, ready to serve clients
n When asked to create new object, .NET checks if there is an 

object in the pool, and will return it to client
l Else: create a new object, up to the pool limit

n Pool is per object type
l In one application can have components with no pool, or as 

many pools as services components types 

Object Pooling

n Internet clients
n When instantiating object is a costly generic operation

l Or when need to pool resources
n Constructor does as much of the time-consuming work uniform 

for all clients
l Acquiring connections
l Running scripts

Fetching initialization data from files or across network 



16

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Client

The Pool 

Server
Object

Server
Object

Server
Object

Server
Object

Server
Object

Server
Object

Client

Server
Object

.NET

new

1

2

1 Client  calls new
.NET retrieves from pool
Client use the object
GC
.NET returns 
object to pool 

2

3

4

5

Object Pooling

Client

Server
Object

The Pool 

Server
Object

Server
Object

Server
Object

Server
Object

Server
Object

Server
Object

Client

.NET

43

1 Client  calls new
.NET retrieves from pool
Client use the object
GC
.NET returns 
object to pool 

2

3

4

5

Object Pooling



17

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Client

The Pool 

Server
Object

Server
Object

Server
Object

Server
Object

Server
Object

Server
Object

Client

.NET

Server
Object

5

Object Pooling

1 Client  calls new
.NET retrieves from pool
Client use the object
GC
.NET returns 
object to pool 

2

3

4

5

[Client calls a method]

Get object 
from pool

Is it
Dispose()

[no]                                    [yes]                   Execute
the method

Return
to the pool

Client 
creates

[GC]

Object Pooling



18

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Object Pooling

n Min pool size
l Start pool with that number 
l Mitigate sudden spikes in demand 

n Max pool size
l Total number of objects created
l Once reached, further requests for objects blocked for 

‘Creation timeout’
l If in timeout object returned to pool, the client gets it
l Clients servers FIFO

Object Pooling

n If the object is in server application, pool is per machine
l Potentially per LAN 

n If the object is in library application, pool per app domain
l Two clients in different app domain will use two distinct pools



19

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

n ObjectPooling attribute controls pooling aspects

n A few overloaded constructors:

[ObjectPooling(MinPoolSize = 3,MaxPoolSize = 10,CreationTimeout = 20)]
public class MyComponent :ServicedComponent,IMyInterface
{}

//first three are equivalent
[ObjectPooling]
[ObjectPooling(true)]  
[ObjectPooling(Enabled = true)] 
[ObjectPooling(MinPoolSize = 2,MaxPoolSize = 10,CreationTimeout = 700)]
[ObjectPooling(MinPoolSize = 2)]
[ObjectPooling(true,MinPoolSize = 0,MaxPoolSize = 10)]
[ObjectPooling(Enabled = true,MinPoolSize = 0,MaxPoolSize = 10)]

Object Pooling

n Set the min pool size
(low water mark) or 
the max pool size 
(high water mark)

n Set the creation 
timeout
l Not the same as the

time it takes to create
an object

Object Pooling



20

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Disposing of a Pooled Object

n Object returns to pool when garbage collected
n Client can call Dispose() in ServicedComponent to 

expedite

Just In Time Activation (JITA)

n .NET can dedicate object per client only while a call in progress
n When instantiating object is not costly, but object uses 

expensive/scarce resources and when clients can hold the object 
reference
l Intranet clients

n Client would not know the difference
l References a proxy



21

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Client Interceptor

1 Client  calls a method on proxy, that delegates the call to the object
When method returns, object indicates it can be deactivated
Interceptor release object, and nulls its pointer to it 
Client makes another call, the interceptor creates a new object and 
delegates the call

2

3

4

Server
Object

1 1

2

3

Just In Time Activation (JITA)

Client Interceptor

1 Client  calls a method on proxy, that delegates the call to the object
When method returns, object indicates it can be deactivated
Interceptor release object, and nulls its pointer to it 
Client makes another call, the interceptor creates a new object and 
delegates the call

2

3

4

Server
Object

4 4

Just In Time Activation (JITA)



22

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Just In Time Activation (JITA)

n .NET can not arbitrarily kill objects, that may not be ready to be 
shut down
l Object has to tell ES it is willing to be destroyed 

n Requires object to be state aware
l At beginning of every method should initialize its state 

from a durable storage, and at the end should save its state 

Just In Time Activation (JITA)

n Letting .NET object is ready to be destroyed by setting the ‘Done’ 
bit on the object context

n By default, done bit is set to false 
l JITA object created in its own context 

n Can set done bit programmatically or configure a method to 
automatically deactivate on return



23

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

[JustInTimeActivation]
public class MyComponent :ServicedComponent,IMyInterface
{ 

public void MyMethod(long objectIdentifier)
{
GetState(objectIdentifier);
DoWork();
SaveState(objectIdentifier);
//inform .NET to deactivate the object upon method return 
ContextUtil.DeactivateOnReturn = true;

}
}

Just In Time Activation (JITA)

n JustInTimeActivation attribute turns JITA on or off
l Default constructor turns on

n ContextUtil property DeactivateOnReturn sets context 
object done bit

[JustInTimeActivation]
public class MyComponent :ServicedComponent,IMyInterface
{ 

[AutoComplete]
public void MyMethod(long objectIdentifier)
{
GetState(objectIdentifier);
DoWork();
SaveState(objectIdentifier);

}
}

Just In Time Activation (JITA)

n Auto-deactivation:



24

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

[JustInTimeActivation]
public class MyComponent :ServicedComponent,IMyInterface
{ 

~MyComponent()
{

//put cleanup code here
}

}

Just In Time Activation (JITA)

n JITA object get disposed on deactivation
n Put cleanup in destructor

l Deterministic destructor!

JITA with Object Pooling

n Useful when the initialization is generic and expensive (just JITA 
would not make sense)

n Instead of creating and release object on each method, .NET grabs 
it from the pool and return the object to the pool



25

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Transactions

n Execution requires intermediate inconsistent system state
l Money deducted but no bills yet    
l Must roll back changes in case of error

n Multiple users may access system at the same time
l Their access and changes should be isolated from each other
l The resource must synchronize access to information

Transactions

n It's impractical to try and write error handling code
l Very complex scenarios – bound to miss some
l Tons of extra code
l Productivity hit
l Performance hit
l Fragile solution
l Impossible to test or debug

n .NET simplifies using transactions   
l Administrative configuration
l Auto-enlistment
l Distributed transactions



26

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

n A set of potentiality complex operations, that will all succeed or 
fail, as one atomic operation

n Transactions have been around since the early 60's
l Introduced by databases, but other resources such as 

messaging systems support them as well 
l Complex Transaction Processing Monitors (TPM) coordinate 

transactions across databases and resources
l A transaction is executed on behalf of one client only

n Transaction is usually of short duration

What is a Transaction?

What is a Transaction?

n Transactions can spread across multiple machines and resources 
l Any resource can fail
l All resources determine overall success or failure (vote on the 

transaction outcome)
l Coordination challenge

n While transaction in progress, system can be in an inconsistent 
state 
l But the transaction must leave the system in a consistent state

n Faster transaction ==  scalability and throughput  
n In general, whenever you update persistent storage, do it under 

the protection of a transaction  



27

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

DB

Client Obj Transaction

Single Component/Single Resource 
Transaction

n One component, accessing just one resource (such as a database) 
that should take part in a transaction

n Component informs resource a transaction has started (enlist the 
resource)

n Resource starts recording operations you ask it to do, but does not 
actually do it yet

Single Component/Single Resource 
Transaction

n When component is done, it informs resource to commit changes
l If errors, it should instruct to abort, or rollback

n Even if component wants to commit, the resource could have 
errors, and the transaction aborts

n Observation: only the application can request to commit but both
application and resource can abort the transaction

n Requires explicit programming, to enlist a resource in a 
transaction and inform it to commit or rollback 
l BeginTransaction() and 
EndTransaction(commit/abort) calls 

l Most resources support this sort of interaction



28

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

DB

Client Obj
Transaction

Obj Obj

Multiple Components/Single Resource 
Transaction

n Multiple components accessing just one resource that should take
part in a transaction

n Things get a lot more complicated

Multiple Components/Single Resource 
Transaction

n Resource should be enlisted just once
l By whom? first to access it? first created? How would 

components know all that? 
n Components can be on different machines

l Transaction has to flow across machine boundary 
l One machine can crush, while the other continue processing 

n Each component can encounter error and abort
l Only if they all succeed ask the resource to commit
l Somebody has to collect the votes 



29

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Multiple Components/Single Resource 
Transaction

n The resource should be notified about the vote just once
l But who knows what is the right thing to do?  

n Resource can still refuse to commit changes
n .NET make this situation as easy as the previous one  

DB

Client Obj
Transaction

Obj Obj

DBDB

Multiple Components/Multiple Resources 
Transaction

n Multiple components accessing multiple resources, all taking part 
in same transaction



30

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

n Multiple points of failure 
n Resources must be enlisted, and just once 

l Who keeps track of what resources are used? 
l Put that knowledge in your code ?

n Components and resources can be on different machines
l Transaction has to flow across machine boundary 

n Each resource can encounter error with the requested changes 
(wrong account number) and abort the transaction

n .NET make this as easy as the first one  

Multiple Components/Multiple Resources 
Transaction

n TransactionOption enums declares COM+ transaction support

l Default constructor is “Required”

public enum TransactionOption
{

Disabled, 
NotSupported, 
Supported, 
Required, 
RequiresNew

} 
[Transaction(TransactionOption.Required)]
public class MyComponent : ServicedComponent
{…} 

[Transaction]
[Transaction(TransactionOption.Required)]

Transactions



31

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

n Set the static property MyTransactionVote of ContextUtil

n Can use  ContextUtil.SetComplete() or  
ContextUtil.SetAbort()

n Be mindful of exceptions

ContextUtil.MyTransactionVote = TransactionVote.Commit;

Voting On Transaction

[Transaction]
public class MyComponent : ServicedComponent
{

public void MyMethod(long objectIdentifier)   
{      

try
{

GetState(objectIdentifier);
DoWork();
SaveState(objectIdentifier);
ContextUtil.MyTransactionVote = TransactionVote.Commit;

}
catch
{

ContextUtil.MyTransactionVote = TransactionVote.Abort;
}
//Let COM+ deactivate the object once the method returns  
ContextUtil.DeactivateOnReturn = true;

}
//other methods 
protected void GetState(long objectIdentifier){…}
protected void DoWork(){…}
protected void SaveState(long objectIdentifier){…}

} 



32

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

n Voting without exception-handling

n Offers exception propagation (good for performance)

[Transaction]
public class MyComponent :ServicedComponent
{

public void MyMethod(long objectIdentifier)   
{

//Let COM+ deactivate the object once the method returns 
//and abort. Can use ContextUtil.SetAbort() as well
ContextUtil.DeactivateOnReturn = true;
ContextUtil.MyTransactionVote = TransactionVote.Abort;

GetState(objectIdentifier);
DoWork();
SaveState(objectIdentifier);

ContextUtil.MyTransactionVote = TransactionVote.Commit;
}

}

Voting On Transaction

[Transaction]
public class MyComponent : ServicedComponent
{

[AutoComplete]
public void MyMethod(long objectIdentifier)
{

GetState(objectIdentifier);
DoWork();
SaveState(objectIdentifier);

}
} 

Auto Complete Attribute

n AutoComplete method-attribute sets done and consistency bits 
to true if the method did not throw an exception, and the 
consistency bit to false if it did 
l Similar the COM+ Method auto-deactivation 
l Deactivates JITA objects 



33

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

public interface IMyInterface
{ 

//Avoid this:
[AutoComplete] 
void MyMethod(long objectIdentifier);

}

[AutoComplete]
[AutoComplete(true)]

Auto Complete Attribute

n Overloaded constructor:

n Avoid using at interface definition:
l Works, but confused design and contract with implementation

Enterprise Services Security

n Only way in .NET 1.1 for authentication of remote calls out of the 
box
l Granular control
l Encryption 

n Rich role-based security 
l Independent of Windows groups
l Full security call context propagation



34

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Application Security

n ApplicationAccessControl attribute 
l Turning authorization on/off

ÙConstructor takes a Boolean flag

l Security level
AccessChecksLevel property set to  
AccessChecksLevelOption.ApplicationComponent or 
AccessChecksLevelOption.Application

l Authentication level
Authentication property accepts enum values of 
AuthenticationOption

l Impersonation level
ImpersonationLevel property accepts the enum values 
of ImpersonationLevelOption

n Server app

[assembly: ApplicationActivation(ActivationOption.Server)]
[assembly: ApplicationAccessControl(

true,//Authorization
AccessChecksLevel=AccessChecksLevelOption.ApplicationComponent,
Authentication=AuthenticationOption.Packet,
ImpersonationLevel=ImpersonationLevelOption.Identify)]

Application Security



35

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

[assembly: ApplicationActivation(ActivationOption.Library)]
[assembly: ApplicationAccessControl(

true,// Authorization
AccessChecksLevel=AccessChecksLevelOption.ApplicationComponent,
//use AuthenticationOption.None to turn off authentication, 
//and any other value to turn it on
Authentication=AuthenticationOption.None)]

Application Security

n Library app:

[ComponentAccessControl(true)]
public class MyComponent :ServicedComponent,IMyInterface
{}

n Turn component level access checks on or off using 
ComponentAccessControl attribute

l Default constructor turns security on 
[ComponentAccessControl]

Component Access Checks



36

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

[assembly: SecurityRole("Manager",
Description = "Can access all components")]

[assembly: SecurityRole("Teller",
Description = "Can access IAccountsManager only")] 

Adding Roles to Application

n Use SecurityRole attribute

l Description property is optional

n Overloaded constructors

n Use the Marshaler role to create components

n SecureMethod attribute to prevent marshaler from abusing 
reflection
l At class or method level 

[assembly: SecurityRole("Manager")]
[assembly: SecurityRole("Manager", false)] 
[assembly: SecurityRole("Manager",SetEveryoneAccess = false)]

[assembly: SecurityRole("Marshaler",SetEveryoneAccess = true)]

Adding Roles to Application



37

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

[assembly: SecurityRole("Role1")]
[assembly: SecurityRole("Role2")]
[assembly: SecurityRole("Role3")]

[SecurityRole("Role2")]
interface IMyInterface
{
[SecurityRole("Role3")]
void MyMethod();

}

[SecurityRole("Role1")]
public class MyComponent :ServicedComponent,IMyInterface
{}

Assigning Roles

n Use SecurityRole attribute
l No use for users/description properties

at that level

n Done via SecurityCallContext object
l Current call is a static property of same type

[SecurityRole("Manager")]
public class Bank : ServicedComponent
{  

[SecurityRole("Customer")]
void TransferMoney(int sum,long accountSrc,long accountDest)   
{      

bool callerInRole = false;      
callerInRole = SecurityCallContext.CurrentCall.IsCallerInRole("Customer");
if(callerInRole)//The caller is a customer      
{        

if(sum > 5000)            
throw(new UnauthorizedAccessException(@"Caller does not have sufficient 

credentials to transfer this sum"));      
}      
DoTransfer(Sum,accountSrc,accountDest);//Helper method

}
//Other methods

}

Verifying Caller’s Role Membership



38

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Queued Components

n Disconnected work
l Orders submitted without access to remote resources
l Most business communications are async by nature (email, 

vmail…)
l ~40% of new computers sold are mobile

n Workload buffering
l When workload is uneven during the day

n Transactional work

Client

Player Some 
Component

ISomeInterface

Recorder

IMyInterface

1

Listener
3

Player

4

My 
Component

IMyInterface
6

MSMQ

2

5

QC Architecture



39

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

[assembly: ApplicationActivation(ActivationOption.Server)]
[assembly: ApplicationQueuing(Enabled = true,QueueListenerEnabled = true)] 

[assembly: ApplicationQueuing]
//same as:
[assembly: ApplicationQueuing(Enabled = true,QueueListenerEnabled = false)]

n ApplicationQueuingAttribute configures application 
level QC support
l Accept queued calls and enable a listener: 

l Default only accepts calls, no listener:

Queued Components

n InterfaceQueuingAttribute configures interface to 
support queued calls

l Overloaded constructors:

[InterfaceQueuing]
public interface IMyInterface
{

void MyMethod();
}

//all are equivalent
[InterfaceQueuing] 
[InterfaceQueuing(true)]
[InterfaceQueuing(Enabled = true)]

Queued Components



40

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

IMyInterface obj;
obj=(IMyInterface)Marshal.BindToMoniker("queue:/new:MyAssembly.MyComponent"
obj.MyMethod();//call is recorded

IMyInterface obj;
obj=(IMyInterface)Marshal.BindToMoniker("queue:/new:MyAssembly.MyComponent"
obj.MyMethod();//call is recorded

//Expedite dispatching the recorded calls by releasing the recorder
Marshal.ReleaseComObject(obj);          

QC-Client Side

n Client uses Marshal.BindToMoniker() to record calls

n Recorder adds message to queue when garbage collected
n Client can expedite by forcing a release: 

Loosely Coupled Events

n Effective way of de-coupling components 
n Other capabilities such as security, queuing, transactions 
n With delegate-based events:

l Client has to subscribe per event per publisher
l Coupled life line
l Cannot subscribe to type
l No administrative setting of connection

n LCE lets you configure subscriptions
n LCE has separate life line
n Can subscribe existing objects as well



41

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Loosely Coupled Events

Persistent
Subscriber

ISink

Publisher

.NET
Enterprise
Services

Component
persistent 
subscription list

Transient
Subscriber

ISink

Register Transient 
Subscription

Fires event
Fires event

2

Please Publish
3

Create

5

Fires event6

7

Look for a subscription
4

ISink

Create
1

Event Class

n AKA COM+ Events

public interface IMySink
{   

void OnEvent1();   
void OnEvent2();

}
[EventClass]
public class MyEventClass : ServicedComponent,IMySink
{

public void OnEvent1()
{

throw new NotImplementedException(exception);
}
public void OnEvent2()
{

throw new NotImplementedException(exception);
}
const string exception = @"You should not call an event class   

directly. Register this assembly using RegSvcs /reconfig";
}

n EventClass attribute denotes a managed class as an event class

Loosely Coupled Events



42

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

//These are equivalent: 
[EventClass]
[EventClass(AllowInprocSubscribers = true,FireInParallel=false)]

IMySink sink;
sink = new MyEventClass();
sink.OnEvent1(); 

Loosely Coupled Events

n EventClass attribute constructor is overloaded

n Publishing event

Loosely Coupled Events

n Persistent subscribers
l Get created to handle event
l Admin support
l Persist machine reboot

n Transient subscribers
l Notifying existing subscribers
l No out-of-the-box or admin support

ÙUse my helper class

l Gone after machine reboot



43

IDesign Inc.         www.idesign.net 

©2004 IDesign Inc. All rights reserved

Web Services Support

n When set:
l Use WS for all invocation
l Depending on remoting call, can

maintain state
n Great for migration 
n Windows Server 2003 only

Resources

n Programming .NET components 
l By Juval Lowy, O'Reilly 2003

n www.idesign.net
l Code library
l Coding standard

n .NET Master Class
l Regular and advanced 
l 3-4 annually 
l Upcoming events on

www.idesign.net


